

Nourrir la vision prospective et stratégique des agriculteurs

opération réalisée avec le soutien financier de

1

Webinaire gratuit 05/11/2024

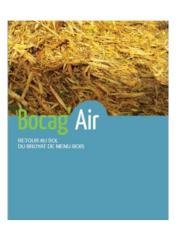
11h - 12h30

« Les usages des biochars et des autres coproduits de la filière bois énergie sur la ferme et sur le territoire dans le contexte climatique actuel et à venir »

Jacques BERNARD

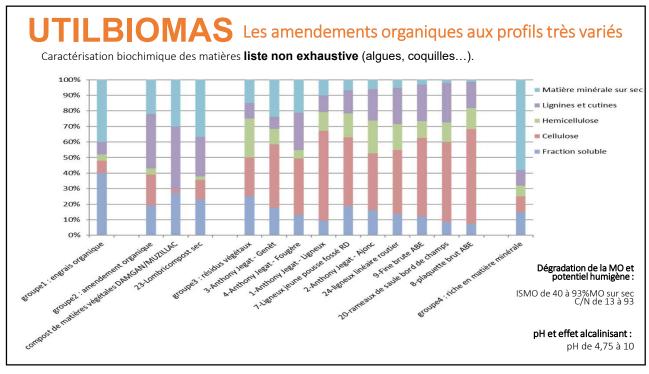
opération réalisée avec le soutien financier de

Les alternatives au brûlage à l'air libre, à intégrer dans les bonnes pratiques des gestionnaires


Difficilement valorisables pour l'énergie, ces matières peuvent pourtant trouver des usages intéressants sur les fermes (paillage, litière, retour au sols etc...) dans une logique d'autonomie et de réduction des intrants.

7

Les alternatives au brûlage à l'air libre, comment aller au-delà des premières expérimentations ?


Issu d'un AAP Agr'Air de l'ADEME, il s'est focalisé sur une cuma des Côtes d'Armor secteur Hillion - Cuma Armor Bûche pour rédiger en 2020 le Guide "Retour au sol du broyat de menu-bois"

Le programme PEI <u>UTILBIOMAS</u> (2017) avait aussi permis d'envisager des essais au champ pour mesurer les impacts agronomiques sur des exploitations du Parc Naturel Régional du Golfe du Morbihan.

Les premiers enseignements doivent être confortés :

- temps de ressuyage limité par rapport à la conception des équipements de broyage,
- Confection des tas et organisation collective.

UTILBIOMAS

Avant d'envisager les amendements organiques, bien appliquer les bonnes pratiques agronomiques

Des réponses à l'échelle de la parcelle et de l'exploitation

- · Une re-conception de son système de culture,
- L'activation de leviers agronomiques:
 - ·Couverts végétaux et plantes compagnes,
 - •Gestion des résidus de cultures,
 - ·La simplification du travail du sol,
 - ·Nouvelles cultures et variétés,
 - •La gestion des prairies, pratique de la jachère,
 - •L'apport de différentes sources de biomasse végétale brute.

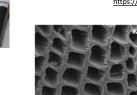
BIOMASSE SUPPLEMENTAIRE

11

Qu'est-ce que le biochar

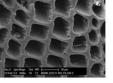
Matériau noir, solide et à haute teneur en

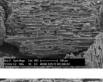
• Produit à partir d'une variété de biomasse

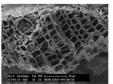


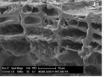

carbone (Très) poreux • Récalcitrant (stable)

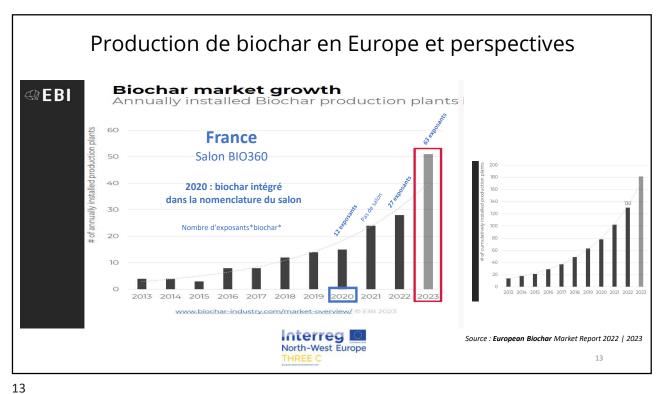
• Forme et taille variables

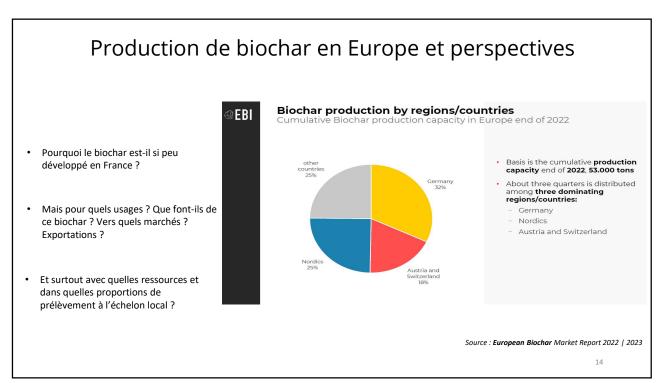


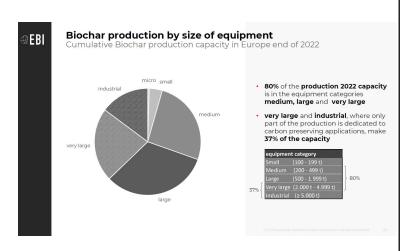












Production de biochar en Europe et perspectives

- Lesquels produisent des co-produits : gaz/huiles ?
- Lesquels sont dédiés à la production de biochar
- Lesquels utilisent des ressources n'entrant pas dans le champs compétitif des filières de valorisation des biomasses (alimentation, fertilité des sols, matériau, énergie)
- Quelle évaluation environnementale GES de ces projets?
- Sont-ils reproductibles ? Dans quelles conditions ?

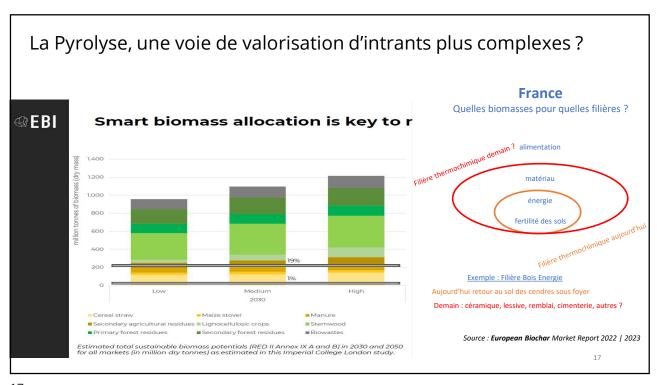


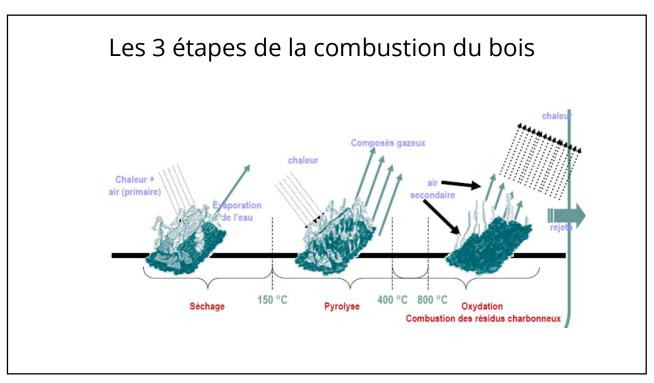
Source : European Biochar Market Report 2022 | 2023

15

15

La Pyrolyse, une voie de valorisation d'intrants plus complexes?

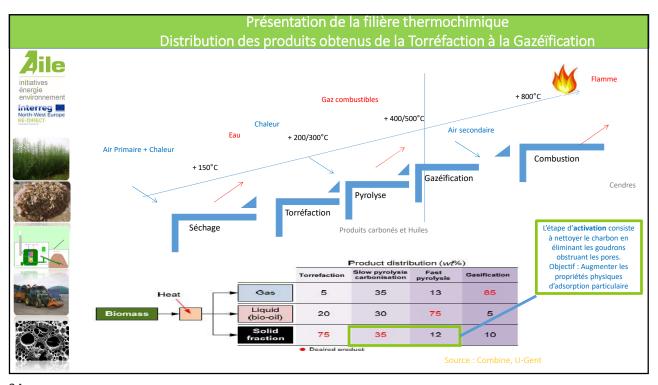

Quel modèle économique d'utiliser de la plaquette forestière pour produire du biochar dans le seul but de faire du retour au sol?

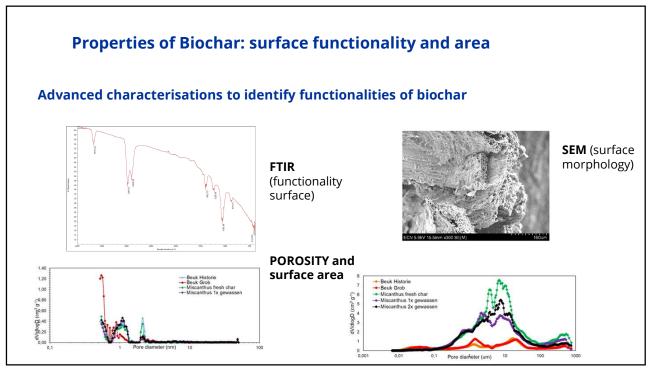

Ces agro-ressources aux propriétés physico – chimiques jugés plus complexes en combustion pourraient-ils produire des biochars avec des propriétés intéressantes pour un usage donné?

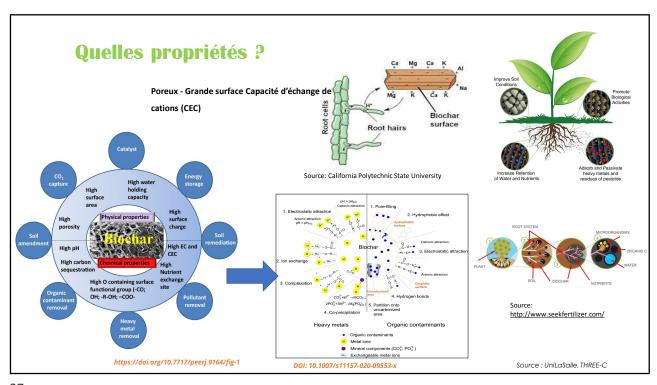
Mais comment ne pas concurrencer le retour au sol pour la fertilité des sols ? la filière méthanisation ?

Source : European Biochar Market Report 2022 | 2023

16




itiatives nergie		PCI (kJ/kg brut)	Humidité (%)	Résultats exprimés sur produit sec										
nvironnement				Cendres à 550 ℃ (%)	Azote (%)	Soufre total (mg/kg)	Chlore total (mg/kg)	T° de déformation (℃)	Cadmium (mg/kg)	Chrome (mg/kg)	Cuivre (mg/kg)	Zinc (mg/kg)	Arsenic (mg/kg)	
PLAN BOIS ÉNERGIE BRETAGNE	Préconisations Obernberger				< 0.6	<1000	<1000		<0.0005 (sur cendres)			<0.08 (sur		
	Marque NF 444 HP	>15800	<11	<5	<1.5	<2000	<2000	>1000	< 0.5	<10	<40	<60	<1	
	Granulés bois	17 954	6	0,3	-	160	132	1311	0,04	0,5	2,1	3,9	0,0	
	Granulés miscanthus	16 257	10	1.8	-	507	757	855	0,05	1,1	1,6	10,4	0,1	
	Granulés chanvre	15 744	9	2,3	0,6	840	297	1306	0,03	1,8	2,5	4,4	0,1	
	Granulés paille blé	15 414	10	4,6	0,5	1900	5233	843	-	0,8	2,2	6,6	- 5	
	Granulés paille colza	15 152	10	5.7	0,7	4100	3167	1150	- 3	0,6	2,2	6,5	0,1	
	Granulés switchgrass	15 742	10	3.8	0,4	830	823	1185	-	1,9	3,1	9,1	0,1	
	Granulés roseau	15 507	10	5,3	0,7	1900	1233	1434	9	1,6	2,9	28,1	15	
	Miscanthus vrac	15 109	16	1.9	<0.30	553	933	900	0,06	2,3	1,6	14.5	0,1	
	Ceps vigne			8.0	0,5	600	350	1201	0,12	3,2	27,8	41,1	3,3	
	Sarments vigne	13 580	21	5,4	0,6	720	643	1312	0,19	3,4	13,4	52,9	1,8	
	Menue paille		15	20,0	0,5	500	2500	1296	*	4,0	3,2	7,0	~	
	Feuilles voie verte	10 622	25	30,5	1,1	660	260	1194	<					
	Fauche Voie verte	2.818	74	15,8	1,7	1333	1900	1186	×	0,5	0,6	3,6	~	
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Lande	11 553	40	29	1,5	1400	987	1106						


Principes de la combustion du bois

La maîtrise de ces différentes phases conditionne le bon déroulement de la combustion et son rendement.

100°C	Séchage	Évaporation et élimination de l'eau contenue dans le bois.
250°C	Gazéification du bois	Décomposition du bois sous l'effet de la chaleur : - libération des composés gazeux (vapeur d'eau, gaz combustibles); - formation de charbon de bois (composé principalement de carbone C).
300°C	Apparition des flammes	Point d'auto-inflammation de certains gaz combustibles (début de l'oxydation), en présence d'oxygène.
500°C	Gazéification du carbone	Transformation du charbon en gaz combustibles riches en hydrogène (H) et monoxyde de carbone (CO).
700°C	Oxydation complète des gaz combustibles	Transformation des gaz combustibles en dioxyde de carbone (CO ₂), vapeur d'eau (H ₂ O) et oxydes d'azote (NO _x), en présence d'oxygène. Restent les cendres.

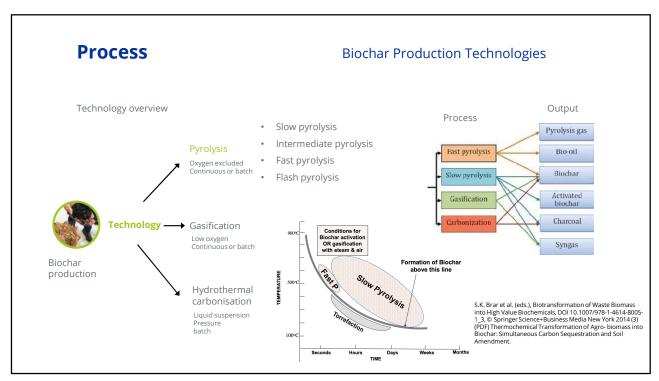
Process

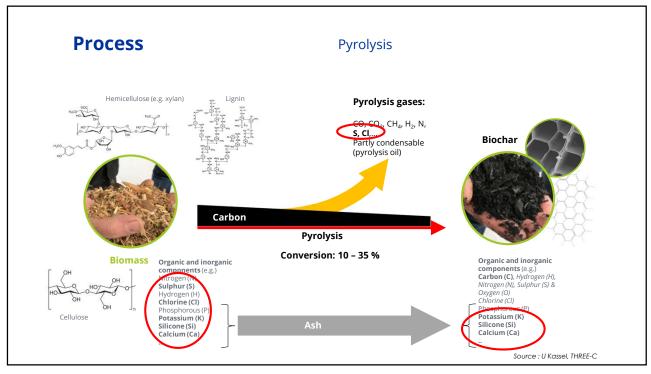
Biochar and Activated Carbon

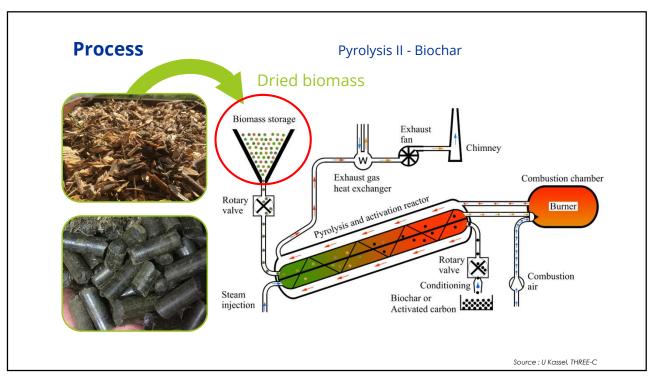
Aim of the process: high quality biochar and activated carbon Biochar properties (EBC):

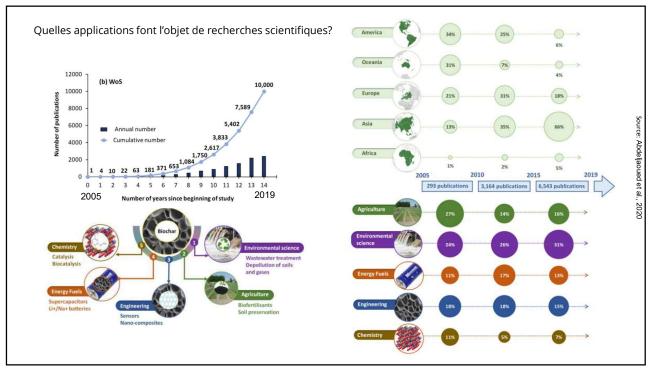
- High carbon content (> 50 % / > 80 % DM)
- Low ash content
- Thresholds for heavy metals, polycyclic aromatic hydrocarbons (PAHs), PCB,...

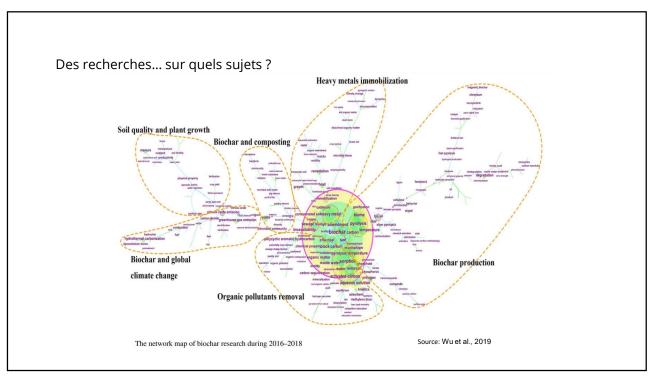
Biochar production (EBC):

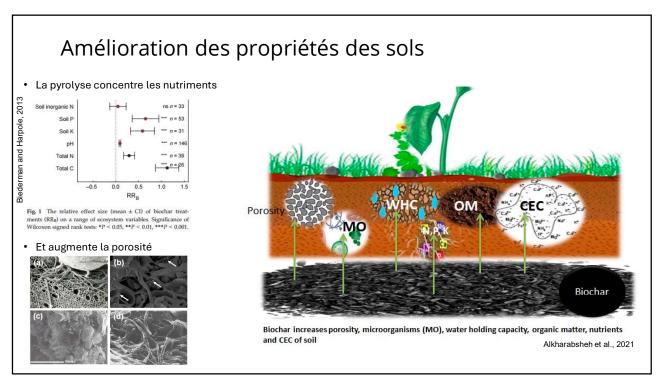

- Pyrolysis 🗆 energy efficient
- Pyrolysis gas \square recovered or burned
- Reuse of produced heat

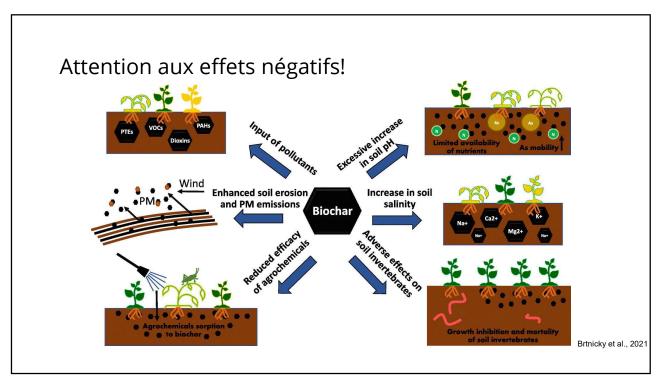

Activated carbon:

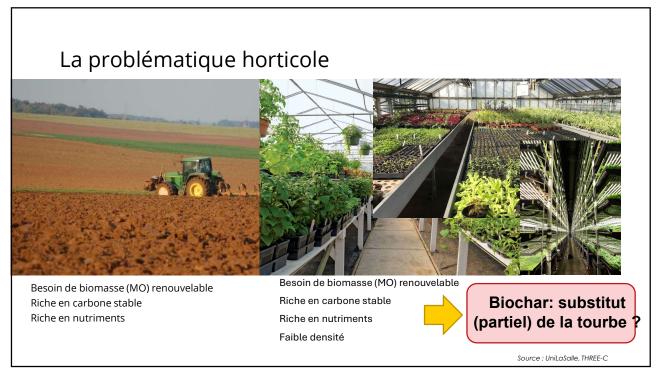

- High specific surface area and adsorption capacity
- Required purity depends on application





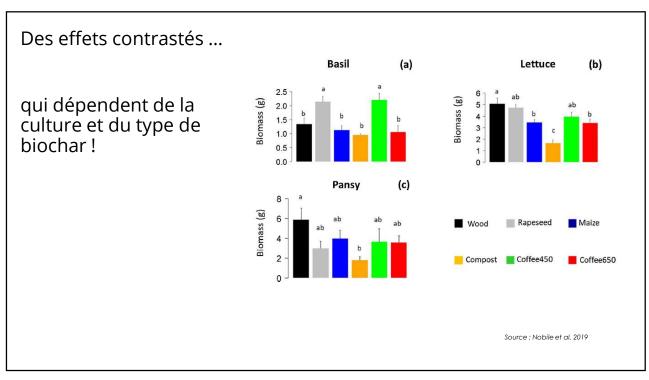


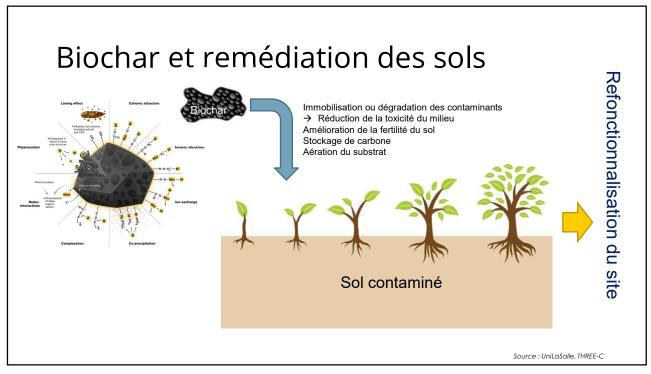


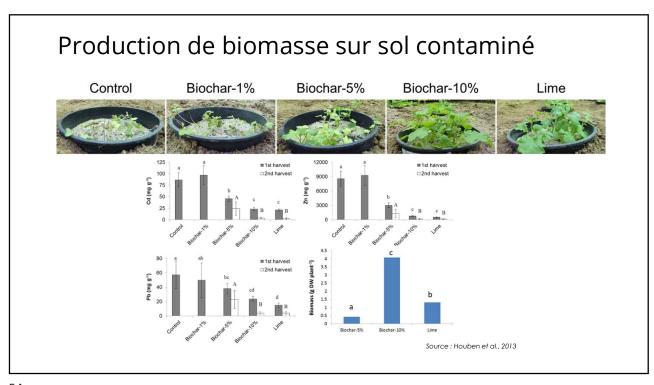


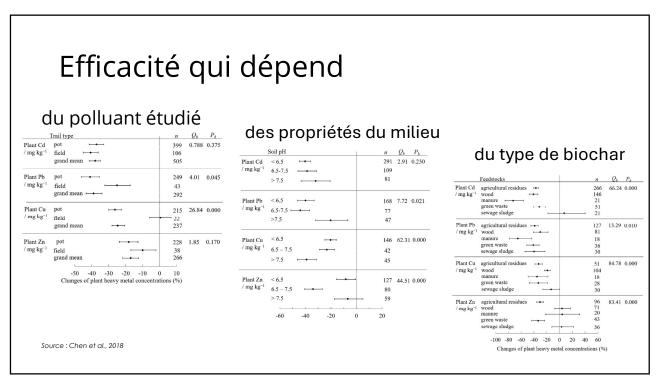
La problématique horticole

Besoin de biomasse (MO) renouvelable Riche en carbone stable Riche en nutriments


Source : UniLaSalle, THREE-C






51

Source : UniLaSalle, THREE-C

Properties of biochar: Stability of Carbon

Great interest in the potential of biochar as a means of greenhouse gas emission reduction and carbon sequestration for climate change mitigation.

Biochar H/C $_{org}$ <0.4 \square >70% biochar carbon remaining in soil after 100 years.

Biochar H/ $C_{org} > 0.7 \square < 50\%$ biochar carbon remaining in soil after 100 years

Woolf, Dominic, et al. "Biochar for Climate Change Mitigation." Soil and Climate, 2018, pp. 219–248., doi:10.1201/b21225-8.

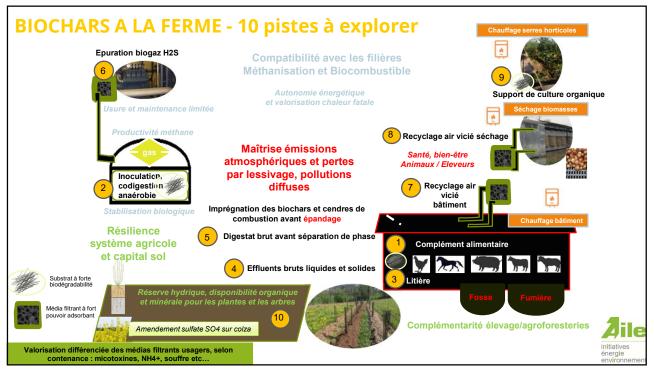
Budai, Alice & Zimmerman, Andrew & Cowie, Annette & Webber, John & Singh, Bhupinder Pal & Glaser, Bruno & A. Masiello, Carrie & Andersson, David & Shields, Frank & Lehmann, Johannes & Camps Arbestain, Marta & M. Williams, Morgan & Sohi, Saran & Joseph, S. (2013). Biochar Carbon Stability Test Method: An assessment of methods to determine biochar carbon stability.

58

Un intérêt et des publications scientifiques en croissance exponentielle à travers le monde ...

Un outil potentiel d'atténuation du changement climatique retenu par le GIEC une tonne de biochar peut stocker entre 2,3 et 3 tonnes de carbone sur plus de cinq-cents ans


Un process de production à 2 variables principales à maîtriser pyrolyse de la biomasse selon temps de séjour variable et sous des températures pouvant varier entre 350 et 1 000 c ...


L'importance d'une ACV positive ...

des utilisations "hors sol" variées : la purification des gaz ou de l'eau, intégration dans des matériaux de construction et booster de la méthanisation

un retour au sol, principalement sous forme d'amendement avec des effets variables suivant la nature des biochars et selon les contextes pédo-climatiques

Un modèle économique qui reste encore fragile ...

Les actions de sensibilisation amorcées depuis <u>2019</u> sur les conditions de durabilité d'une filière biochars

- 1. Élargir le panel des usages en cascade, tout en envisageant des exutoires adaptés aux biochars usagers et une caractérisation des éléments indésirables à la vie du sol.
- 2. Privilégier les intrants issus des co/sous-produits des filières biomasses pour garantir la durabilité en tenant compte des orientations politiques régionales de planification (SRB, SRADETT).
- 3. Caractériser les biochars produits en France et leur donner une meilleure visibilité => Nécessité de mobiliser des moyens spécifiques pour mettre en place cette étude.

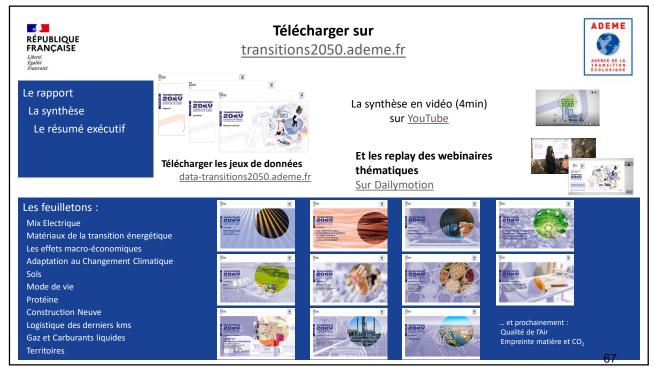
62

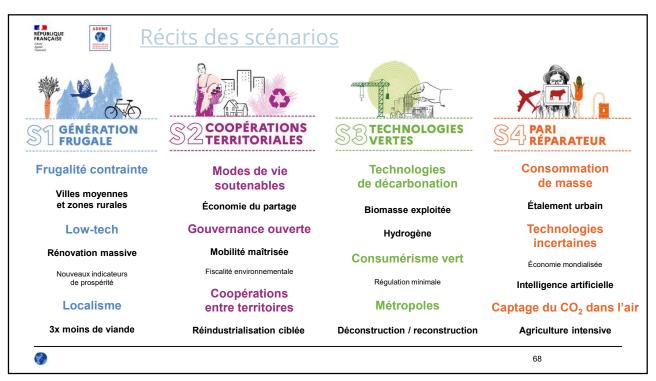
Certification actuelle EBC C- content, Black-C (stability) H/C_{org} & O/C_{org} Heavy metals PAH (EPA's 16 priority pollutants) PCB content; dioxins and furans (I-TEQ OMS) Nutrient contents NPK, Mg, Ca pH, density, ash%, porosity, SSA & WHC Autres initiatives de certification https://biochar-international.org/ https://www.anzbi.org/

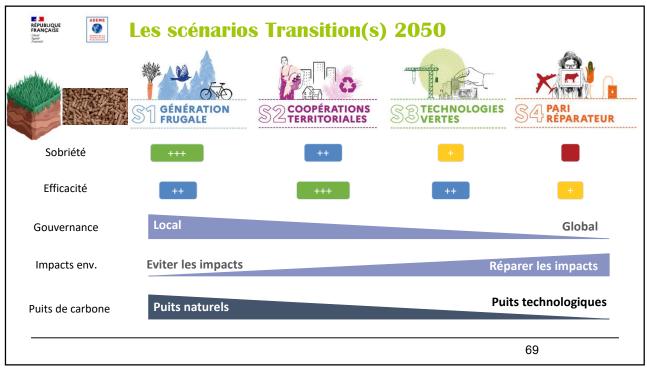
Critères de qualité du biochar : vers une Normalisation

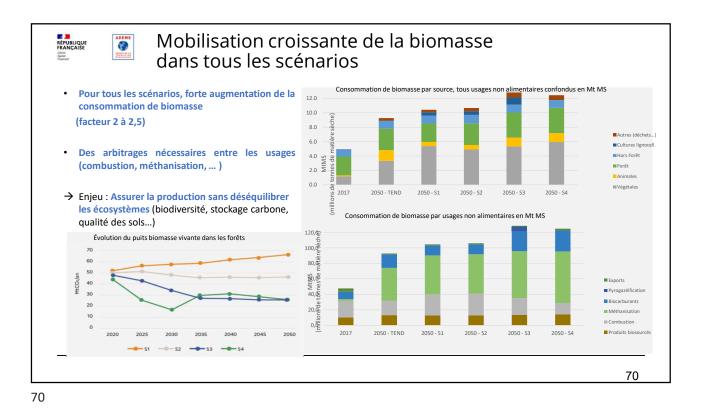
Démarche volontaire dans l'UE

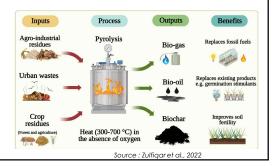
- EBC (European Biochar Certificate)
 - EBC propose 4 catégories : Material Agro AgroOrganic Feed
 - Basic, Premium (Seuils pour les métaux lourds, polluants organiques et matières premières)
 - Aspects liés à la durabilité du processus de production (les émissions, l'efficacité énergétique, la récupération de chaleur, l'approvisionnement en matières premières)
- IBI (International Biochar Initiative) :


EBC. (2012). European Biochar Certificate - Guidelines for a Sustainable Production of Biochar. Foundation; European Biochar Foundation (EBC). https://doi.org/10.13140/RG.2.1.4658.7043

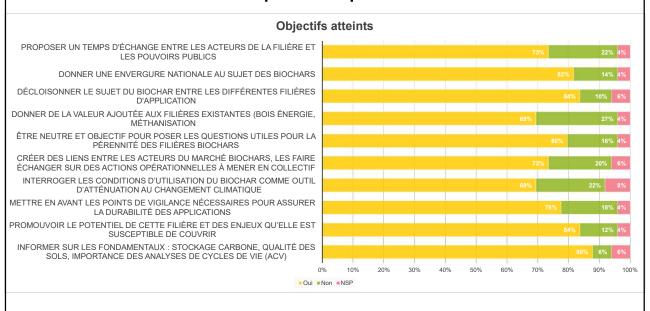

 $\textbf{Source:} \textit{Biochar standardization and legislation harmonization, http://dx.doi.org/10.3846/16486897.2016.1254640$


64


Les actions de sensibilisation amorcées depuis 2023 sur les conditions de durabilité d'une filière biochars 4. Continuer à élargir le panel d'utilisateurs potentiels et d'apporteurs de solutions techniques, envisager les synergies entre eux, toute neutralité gardée, avec le sens du partage, de la coopération et de la convivialité. * Et si on organisait un évènement national en partenariat avec l'ADEMÉ en associant les métiers de l'eau avec le Pôle Dream, de la terre avec Vegepolys et aussi les adhérents du Club Pyrogazéfications La Fédération des acteurs au níveau national et l'alignement avec le soutien Public



Et les biochars?


• Plusieurs aspects à considérer:

- ➤ Quel gisement visé et comment assurer l'approvisionnement ?
- ➤ Quels impacts environnementaux de cette nouvelle filière ?
- ➤ Quel usage des biochars ?

Vers une économie circulaire?

Evaluation des participants aux assisses

72

https://aile.asso.fr/assises-nationales-des-biochars/. www.energie-plus.com/le-biochar-cherche-sa-place

Pour plus d'informations

74

Webinaire gratuit 05/11/2024 11h – 12h30

« Les usages des biochars et des autres coproduits de la filière bois énergie sur la ferme et sur le territoire dans le contexte climatique actuel et à venir »

Jacques BERNARD

ADEME

AGENCE DE LA
TRANSITION
ÉCOLOGIQUE

opération réalisée avec le soutien financier de